a. By the fundamental theorem of calculus, the velocity function is
[tex]v(t)=v(0)+\displaystyle\int_0^ta(u)\,\mathrm du[/tex]
The particle starts at rest, so [tex]v(0)=0[/tex], and we have
[tex]v(t)=\displaystyle\int_0^t6\cos u\,\mathrm du=6\sin u\bigg|_0^t=6\sin t[/tex]
Then the position function is
[tex]x(t)=\displaystyle x(0)+\int_0^tv(u)\,\mathrm du[/tex]
with [tex]x(0)=6[/tex], so
[tex]x(t)=6+\displaystyle\int_0^t6\sin u\,\mathrm du=6-6\cos u\bigg|_0^t=12-6\cos t[/tex]
b. The particle is at rest whenever [tex]v(t)=0[/tex]; this happens for
[tex]6\sin t=0\implies \sin t=0\implies t=n\pi[/tex]
where [tex]n[/tex] is any integer.