Simplify the expression. Assume that all variables are positive. Exponents in simplified form should all be
positive.
![Simplify the expression Assume that all variables are positive Exponents in simplified form should all be positive class=](https://us-static.z-dn.net/files/d4d/d9c4c90caeeaedcb204a674e51195866.png)
Given:
The given expression is [tex]\frac{7^{\frac{1}{2}} \cdot 7^{\frac{3}{2}}}{7^{-3}}[/tex]
We need to determine the exponents in simplified form.
Exponents in simplified form:
Let us determine the exponent in simplified form.
Let us apply the exponent rule [tex]\frac{x^{a}}{x^{b}}=x^{a-b}[/tex]
Thus, we have;
[tex]7^{\frac{1}{2}+\frac{3}{2}-(-3)}[/tex]
Adding the fractions, we get;
[tex]7^{\frac{4}{2}-(-3)}[/tex]
Cancelling the common terms, we have;
[tex]7^{2-(-3)}[/tex]
Simplifying the exponent, we get;
[tex]7^{2+3}[/tex]
Adding the exponent, we have;
[tex]7^5[/tex]
Thus, the simplified form of the expression is [tex]7^5[/tex]