https://hizliresim.com/ID0Ydx

can you explain these questions in detail? By writing all the details on the paper for each question. Thanks ..:)

Respuesta :

1. Assuming [tex]z=z(x,y)[/tex], we have

[tex]D_x(z\cos z)=z_x\cos z-z\sin z\,z_x=z_x(\cos z-z\sin z)[/tex]

[tex]D_x(x^2y^3+z)=2xy^3+z_x[/tex]

so that

[tex]z_x(\cos z-z\sin z)=2xy^3+z_x[/tex]

[tex]z_x(\cos z-z\sin z-1)=2xy^3[/tex]

[tex]z_x=\dfrac{2xy^3}{\cos z-z\sin z-1}[/tex]

2. Let [tex]f(x,y,z)=zx^2+xy^2+yz^2[/tex]. The gradient of [tex]f[/tex] is

[tex]\nabla f(x,y,z)=(2xz+y^2,2xy+z^2,2yz+x^2)[/tex]

and the gradient at the desired point is

[tex]\nabla f(-1,1,2)=(-3,2,5)[/tex]

The tangent plane then has equation

[tex]\nabla f(-1,1,2)\cdot(x+1,y-1,z-2)=0[/tex]

[tex](-3,2,5)\cdot(x+1,y-1,z-2)=0[/tex]

[tex]-3(x+1)+2(y-1)+5(z-2)=0[/tex]

[tex]-3x+2y+5z=15[/tex]

3. [tex]f[/tex] has critical points where the derivatives vanish or do not exist. The latter is irrelevant here, since [tex]f[/tex] is a polynomial and is thus continuous everywhere. So just differentiate and set the derivative equal to 0:

[tex]f_x=y^2-2xy^2+4x^3=0[/tex]

[tex]f_y=2xy-2x^2y=0\implies 2xy(1-x)=0[/tex]

The last equation tells us [tex]x=0[/tex], [tex]y=0[/tex], or [tex]x=1[/tex].

If [tex]x=0[/tex], then in the first equation we get [tex]y^2=0\implies y=0[/tex].

If [tex]y=0[/tex], then [tex]4x^3=0\implies x=0[/tex].

If [tex]x=1[/tex], then [tex]y^2-2y^2+4=0\implies y^2=4\implies y=\pm2[/tex].

So there are 3 critical points at (0, 0), (1, -2), and (1, 2).

4. Stationary points are critical points where the derivative vanishes. So same process as in (3):

[tex]f(x,y)=xye^{x+y}[/tex]

[tex]f_x=ye^{x+y}+xye^{x+y}=0\implies ye^{x+y}(1+x)=0[/tex]

[tex]f_y=xe^{x+y}+xye^{x+y}=0\implies xe^{x+y}(1+y)=0[/tex]

The first equation tells us [tex]y=0[/tex] or [tex]x=-1[/tex]. [tex]e^{x+y}>0[/tex] for all [tex]x,y[/tex], so we can ignore this term.

If [tex]y=0[/tex], then [tex]xe^x=0\implies x=0[/tex].

If [tex]x=-1[/tex], then [tex]-e^{y-1}(1+y)=0\implies y=-1[/tex].

The second equation tells us [tex]x=0[/tex] or [tex]y=-1[/tex]. But this gives the same information as before.

So there are only two stationary points, (0, 0) and (-1, -1).

5. First find the stationary points:

[tex]f_x=2x+y=0[/tex]

[tex]f_y=x+2y=0[/tex]

Solve this to find the one point at (0, 0). At this point, we have [tex]f(0,0)=0[/tex].

Now check for extrema along the boundary. The rectangle is bounded by the lines [tex]x=-2[/tex], [tex]x=2[/tex], [tex]y=-1[/tex], and [tex]y=1[/tex].

On [tex]x=-2[/tex], we have

[tex]f(-2,y)=y^2-2y+4=(y-1)^2+3[/tex]

which attains a minimum of 3 when [tex]y=1[/tex] and a maximum of 7 when [tex]y=-1[/tex].

On [tex]x=2[/tex], we have

[tex]f(2,y)=y^2+2y+4=(y+1)^2+3[/tex]

which has a minimum of 3 at [tex]y=-1[/tex] and a maximum of 7 at [tex]y=1[/tex]

We can check on the other 2 lines, but we'd get the same information.

So we've found that [tex]f[/tex] has an absolute minimum of 0 at (0, 0), and an absolute maximum of 7 at both (-2, -1) and (2, 1).

ACCESS MORE