Given:
The diameter of the circle P is 30 cm.
The radius of the circle P is 15 cm.
The measure of ∠RPS is 125°
We need to determine the arc length of QR.
Measure of ∠QPR:
The angles QPR and RPS are linear pairs.
Thus, we have;
[tex]\angle QPR + \angle RPS=180^{\circ}[/tex]
Substituting the values, we have;
[tex]\angle QPR + 125^{\circ}=180^{\circ}[/tex]
[tex]\angle QPR =55^{\circ}[/tex]
Thus, the measure of ∠QPR is 55°
Arc length of QR:
The arc length of QR can be determined using the formula,
[tex]Arc \ length =(\frac{\theta}{360})2 \pi r[/tex]
Substituting [tex]\theta=55[/tex] and r =15, we get;
[tex]Arc \ length =(\frac{55}{360})2 (3.14)(15)[/tex]
[tex]Arc\ length = \frac{5181}{360}[/tex]
[tex]Arc \ length =14.4 \ cm[/tex]
Thus, the arc length of QR is 14.4 cm.
Hence, Option d is the correct answer.