Answer:
Horizontal shift to the right
Vertical compression
Reflection across the x axis
Vertical shift up
Step-by-step explanation:
Given that the parent function was [tex]g(x)=x^2[/tex]
we notice the following transformations:
a) a horizontal shift to the right in 1 (one) unit rendering: [tex]g(x)=(x-1)^2[/tex]
b) a vertical compression by multiplying our function by a number smaller than 1 ( [tex]\frac{1}{5}[/tex] ), rendering: [tex]g(x)=\frac{1}{5} (x-1)^2[/tex]
c) a reflection across the x-axis by flipping the sign of the function and rendering: [tex]g(x)=-\frac{1}{5} (x-1)^2[/tex]
d) a vertical shift of 7 units up thus giving finally: [tex]g(x)=-\frac{1}{5} (x-1)^2+7[/tex]