Find the derivative.
StartFraction d Over dt EndFraction Integral from 0 to t Superscript 8 StartRoot u cubed EndRoot du
a. by evaluating the integral and differentiating the result.
b. by differentiating the integral directly.

Respuesta :

Answer:

Using either method, we obtain:  [tex]t^\frac{3}{8}[/tex]

Step-by-step explanation:

a) By evaluating the integral:

 [tex]\frac{d}{dt} \int\limits^t_0 {\sqrt[8]{u^3} } \, du[/tex]

The integral itself can be evaluated by writing the root and exponent of the variable u as:   [tex]\sqrt[8]{u^3} =u^{\frac{3}{8}[/tex]

Then, an antiderivative of this is: [tex]\frac{8}{11} u^\frac{3+8}{8} =\frac{8}{11} u^\frac{11}{8}[/tex]

which evaluated between the limits of integration gives:

[tex]\frac{8}{11} t^\frac{11}{8}-\frac{8}{11} 0^\frac{11}{8}=\frac{8}{11} t^\frac{11}{8}[/tex]

and now the derivative of this expression with respect to "t" is:

[tex]\frac{d}{dt} (\frac{8}{11} t^\frac{11}{8})=\frac{8}{11}\,*\,\frac{11}{8}\,t^\frac{3}{8}=t^\frac{3}{8}[/tex]

b) by differentiating the integral directly: We use Part 1 of the Fundamental Theorem of Calculus which states:

"If f is continuous on [a,b] then

[tex]g(x)=\int\limits^x_a {f(t)} \, dt[/tex]

is continuous on [a,b], differentiable on (a,b) and  [tex]g'(x)=f(x)[/tex]

Since this this function [tex]u^{\frac{3}{8}[/tex] is continuous starting at zero, and differentiable on values larger than zero, then we can apply the theorem. That means:

[tex]\frac{d}{dt} \int\limits^t_0 {u^\frac{3}{8} } } \, du=t^\frac{3}{8}[/tex]

ACCESS MORE