Respuesta :

Given:

The given expression is [tex]18^{x^{2}+4 x+4}=18^{9 x+18}[/tex]

We need to determine the solution of the given expression.

Solution:

Let us solve the exponential equations with common base.

Applying the rule, if [tex]a^{f(x)}=a^{g(x)}[/tex] then [tex]f(x)=g(x)[/tex]

Thus, we have;

[tex]x^{2}+4 x+4=9 x+18[/tex]

Subtracting both sides of the equation by 9x, we get;

[tex]x^{2}-5 x+4=18[/tex]

Subtracting both sides of the equation by 18, we have;

[tex]x^{2}-5 x-14=0[/tex]

Factoring the equation, we get;

[tex]x^2-7x+2x-14=0[/tex]

Grouping the terms, we have;

[tex](x^2-7x)+(2x-14)=0[/tex]

Taking out the common term from both the groups, we get;

[tex]x(x-7)+2(x-7)=0[/tex]

Factoring out the common term (x - 7), we get;

[tex](x+2)(x-7)=0[/tex]

[tex]x+2=0 \ and \ x-7=0[/tex]

   [tex]x=-2 \ and \ x=7[/tex]

Thus, the solution of the exponential equations is x = -2 and x = 7.

Hence, Option C is the correct answer.

ACCESS MORE