Answer:
(a). [tex]{\vec{p} =(1.6*10^{-22}\bold{i}+1.6*10^{-22}\bold{j})m \cdot C.}[/tex]
(b). [tex]U = 4.8*10^{-20}J.[/tex]
Explanation:
(a).
The electric dipole moment of the charges is
[tex]\vec{p} = q \vec{r}[/tex]
In our case
[tex]\vec{r} = (1.0*10^{-3}\bold{i}+1.0*10^{-3}\bold{j})m[/tex]
and
[tex]q =1.6*10^{-19}C[/tex];
therefore, the dipole moment is
[tex]\vec{p} =1.6*10^{-19}C *(1.0*10^{-3}\bold{i}+1.0*10^{-3}\bold{j})m[/tex]
[tex]\boxed{\vec{p} =(1.6*10^{-22}\bold{i}+1.6*10^{-22}\bold{j})m \cdot C.}[/tex]
(b).
The work done [tex]U[/tex] by an external electric field [tex]\vec{E}[/tex] is
[tex]U = -\vec{p}\cdot \vec{E}[/tex]
[tex]U = [1.6*10^{-22}\bold{i}+1.6*10^{-22}\bold{j}] \cdot[300\bold{i}][/tex]
[tex]\boxed{U = 4.8*10^{-20}J.}[/tex]