Respuesta :
Answer:
a) 0.214 or 21.4%
b) P=0.011
c) The realtor should sample at least 551 homes.
Step-by-step explanation:
The current thinking is that housing prices follow an approximately normal model with mean $238,000 and standard deviation $5,041.
a) We need to know the proportion of housing prices in Athens that are less than $234,000. We can calculate this from the z-score for the population distribution.
[tex]z=\dfrac{X-\mu}{\sigma}=\dfrac{234,000-238,000}{5,041}=\dfrac{-4,000}{5.041}=-0.793\\\\\\ P(x<234,000)=P(z<-0.793)=0.214[/tex]
The proportion of housing prices in Athens that are less than $234,000 is 0.214.
b) Now, a sample is taken. The size of the sample is n=134.
We have to calculate the probability that the average selling price is greater than $239,000.
In this case, we have to use the standard error of the sampling distribution to calculate the z-score:
[tex]z=\dfrac{\bar x-\mu}{\sigma/\sqrt{n}}=\dfrac{239,000-238,000}{5,041/\sqrt{134}}=\dfrac{1,000}{435.476}= 2.296 \\\\\\P(\bar x>239,000)=P(z>2.296)=0.011[/tex]
The probability that the average selling price is greater than $239,000 is 0.011.
c) We have another sample taken from a distribution with the same parameters.
We have to calculate the sample size so that the margin of error for a 98% confidence interval is $500.
The expression for the margin of error of the confidence interval is:
[tex]E=z\cdot \sigma/\sqrt{n}[/tex]
We can isolate n from the margin of error equation as:
[tex]E=z\cdot \sigma/\sqrt{n}\\\\\sqrt{n}=\dfrac{z\cdot \sigma}{E}\\\\n=(\dfrac{z\cdot \sigma}{E})^2[/tex]
We have to look for the critical value of z for a 98% CI. This value is z=2.327.
Now we can calculate the minimum value for n to achieve the desired precision for the interval:
[tex]n=(\dfrac{z\cdot \sigma}{E})^2\\\\\\n=(\dfrac{2.327*5,041}{500})^2= 23.461 ^2=550.410\approx551[/tex]
The realtor should sample at least 551 homes.
Answer:
a) 0.214 or 21.4%
b) P=0.011
c) The realtor should sample at least 551 homes
Step-by-step explanation: