Respuesta :

Answer:

1. [tex](\sqrt[5]{(m+2)})^{3} = (m+2)^{\frac{3}{5}}[/tex]

2. [tex](\sqrt[3]{(m+2)})^{5} = (m+2)^{\frac{5}{3}}[/tex]

3. [tex]\sqrt[5]{(m)}^{3}+2 = m^{\frac{3}{5}}+2[/tex]

4. [tex]\sqrt[3]{(m)}^{5}+2 = m^{\frac{5}{3}}+2[/tex]

Step-by-step explanation:

Recall that

[tex](\sqrt[n]{x})^{m} = (x^{\frac{m}{n}})[/tex]

Where [tex]x^{m}[/tex] is called radicand and n is called index

1. Root(5, (m + 2) ^ 3)

In this case,

n is 5

m is 3

x = (m + 2)

[tex](\sqrt[5]{(m+2)})^{3} = (m+2)^{\frac{3}{5}}[/tex]

2. Root(3, (m + 2) ^ 5)

In this case,

n is 3

m is 5

x = (m + 2)

[tex](\sqrt[3]{(m+2)})^{5} = (m+2)^{\frac{5}{3}}[/tex]

3. Root(5, m ^ 3) + 2

In this case,

n is 5

m is 3

x = m

[tex]\sqrt[5]{(m)}^{3}+2 = m^{\frac{3}{5}}+2[/tex]

4. Root(3, m ^ 5) + 2

In this case,

n is 3

m is 5

x = m

[tex]\sqrt[3]{(m)}^{5}+2 = m^{\frac{5}{3}}+2[/tex]

ACCESS MORE