Answer:
Width of central maximum will be [tex]7.423\times 10^{-12}m[/tex]
Explanation:
We have given width of the slit [tex]D =0.0537mm=5.37\times 10^{-5}m[/tex]
Wavelength of light [tex]\lambda =719nm=719\times 10^{-9}m[/tex]
Distance of screen from slit D = 2.77 m
Angle to first minimum [tex]sin\Theta =\frac{\lambda }{d}=\frac{719\times 10^{-19}}{0.0537\times 10^{-3}}=1.34\times 10^{-12}[/tex]
So width of the central maximum
w= [tex]2y=2\times Dsin\Theta =2\times 2.77\times 1.34\times 10^{-12}=7.423\times 10^{-12}m[/tex]
So width of central maximum will be [tex]7.423\times 10^{-12}m[/tex]