Respuesta :

Answer:

5x - 2y - 23 = 0

Step-by-step explanation:

Line is passing through the points [tex] (3,\:-4)= (x_1, \:y_1) \: \&\: (5,\: 1)= (x_2,\:y_2) [/tex]

Equation of line in two point form is given as:

[tex] \frac{y -y_1 }{y_1 -y_2 } = \frac{x -x_1 }{x_1 -x_2 } \\ \\ \therefore \: \frac{y -( - 4) }{ - 4 -1} = \frac{x -3 }{3 -5 } \\ \\ \therefore \:\frac{y + 4 }{ - 5} = \frac{x -3 }{ - 2 } \\ \\ \therefore \: \frac{y + 4 }{ 5} = \frac{x -3 }{ 2 } \\ \\ \therefore \: 2(y + 4) = 5(x - 3) \\ \therefore \: 2y + 8 = 5x - 15 \\ \therefore \: 5x - 15 - 2y - 8 = 0 \\ \red{ \boxed{ \bold{\therefore \: 5x - 2y - 23 = 0}}} \\ is \: the \: required \: equation \: of \: line \: in \: \\ standard \: form.[/tex]

ACCESS MORE