Select the equivalent expression
![Select the equivalent expression class=](https://us-static.z-dn.net/files/d54/1e5541969950a4c46bf53ed717c3228a.png)
Given:
The given expression is [tex]\left(3^{3} \cdot 6^{6}\right)^{-3}[/tex]
We need to determine the equivalent expression.
Equivalent expression:
The equivalent expression can be determined by solving the given expression.
Let us apply the exponent rule, [tex]a^{-b}=\frac{1}{a^{b}}[/tex]
Thus, we get;
[tex]\frac{1}{\left(3^{3} \cdot 6^{6}\right)^{3}}[/tex]
Again, applying the exponent rule, [tex](a \cdot b)^{n}=a^{n} b^{n}[/tex]
Thus, we have;
[tex]\frac{1}{\left(3^{3})^3 \cdot (6^{6}\right)^{3}}[/tex]
Simplifying, we get;
[tex]\frac{1}{3^{9} \cdot 6^{18}}[/tex]
Thus, the equivalent expression is [tex]\frac{1}{3^{9} \cdot 6^{18}}[/tex]
Hence, Option C is the correct answer.