Respuesta :

Given:

The given expression is [tex]\left(3^{3} \cdot 6^{6}\right)^{-3}[/tex]

We need to determine the equivalent expression.

Equivalent expression:

The equivalent expression can be determined by solving the given expression.

Let us apply the exponent rule, [tex]a^{-b}=\frac{1}{a^{b}}[/tex]

Thus, we get;

[tex]\frac{1}{\left(3^{3} \cdot 6^{6}\right)^{3}}[/tex]

Again, applying the exponent rule, [tex](a \cdot b)^{n}=a^{n} b^{n}[/tex]

Thus, we have;

[tex]\frac{1}{\left(3^{3})^3 \cdot (6^{6}\right)^{3}}[/tex]

Simplifying, we get;

[tex]\frac{1}{3^{9} \cdot 6^{18}}[/tex]

Thus, the equivalent expression is [tex]\frac{1}{3^{9} \cdot 6^{18}}[/tex]

Hence, Option C is the correct answer.