Answer:
B, C, E
Step-by-step explanation:
[tex]Option A,\\x^2 + y^2[/tex]
If we were to consider expanding the expression ( x + y )^2, take a look at the procedure below;
[tex]( x + y )^2 =\\( x + y )( x + y ) =\\x^2 + xy + yx + y^2 =\\\\x^2 + 2xy + y^2 \neq x^2 + y^2[/tex]
Thus, the first option is incorrect
[tex]Option B,\\( y + x )^2 =\\( y + x )( y + x ) =\\y^2 + yx + xy + x^2 =\\\\x^2 + 2xy + y^2[/tex]
x^2 + 2xy + y^2 is similar to the result of the expansion of ( x + y )^2, so the second option is correct
[tex]Option C,\\x( x + y ) + y ( x + y ) =\\( x + y )( x + y ) =\\\\( x + y )^2[/tex]
Grouping like terms, x( x + y ) + y( x + y ) = ( x + y )^2, and thus the third option is correct
[tex]Option D,\\( x - y )^2 =\\( x - y )( x - y ) =\\x^2 - xy - yx + y^2 =\\\\x^2 - 2xy + y^2 \neq x^2 + 2xy + y^2[/tex]
As noted before, x^2 - 2xy + y^2 is not x^2 + 2xy + y^2, so the fourth option is incorrect
[tex]Option E,\\( x + y )^2 = ( x + y )( x + y )[/tex]
And thus, Option E is correct!