Respuesta :

Given:

The figure contains a right triangle.

The two angles of the triangle are 45° each.

The length of one leg is 3 units.

The length of the hypotenuse is x units.

We need to determine the value of x.

Value of x:

The value of x can be determined using the formula,

[tex]cos \ \theta=\frac{adj}{hyp}[/tex]

where [tex]\theta=45^{\circ}[/tex], adj = 3 and hyp = x.

Substituting these values, we get;

[tex]cos \ 45^{\circ}=\frac{3}{x}[/tex]

Simplifying, we get;

[tex]x=\frac{3}{cos \ 45^{\circ}}[/tex]

[tex]x=\frac{3}{\frac{\sqrt{2}}{2}}[/tex]

[tex]x=3 \times \frac{2}{\sqrt{2}}[/tex]

[tex]x=\frac{6}{\sqrt{2}}[/tex]

Thus, the value of x is [tex]x=\frac{6}{\sqrt{2}}[/tex]