Respuesta :

Given:

Given that the radius of the hemisphere is 9.8 inches.

We need to determine the volume of the hemisphere.

Volume of the hemisphere:

The volume of the hemisphere can be determined using the formula,

[tex]V=\frac{2}{3} \pi r^3[/tex]

where r is the radius of the hemisphere.

Substituting r = 9.8 in the above formula, we get;

[tex]V=\frac{2}{3} (3.14)(9.8)^3[/tex]

Simplifying, we get;

[tex]V=\frac{2}{3} (3.14)(941.192)[/tex]

[tex]V=\frac{5910.69}{3}[/tex]

[tex]V=1970.23[/tex]

Rounding off to the nearest tenth, we get;

[tex]V=1970.2 \ in^3[/tex]

Thus, the volume of the hemisphere is 1970.2 cubic inches.

The volume of a hemisphere is 1971.23 cubic inches, if a radius of a hemisphere is 9.8 inches.

Step-by-step explanation:

The given is,

                   Radius of hemisphere is 9.8 inches.

Step:1

                  Formula of volume of hemisphere is,

                              [tex]V_{Hemisphere} = \frac{2}{3} \pi r^{3}[/tex]..................(1)

                  Where,

                            r - Radius of hemisphere

Step:2

                  From the given,

                           r = 9.8 inches

                  Equation (1) becomes,

                              [tex]V_{Hemisphere} = \frac{2}{3} \pi (9.8)^{3}[/tex]

                                                  = [tex]\frac{2}{3} \pi (942.192)[/tex]

                                                  = [tex]\frac{2}{3} (3.1415) (942.192)[/tex]           [tex](\pi =3.1415)[/tex]        

                                                  = (0.66666666)(3.1415)(942.192)  

                                                  = 1971.23

           Volume of hemisphere = 1971.23 cubic inches

Result:

         The volume of a hemisphere is 1971.23 cubic inches, if a radius of a hemisphere is 9.8 inches.                                                                            

ACCESS MORE