Respuesta :
Given:
Given that the radius of the hemisphere is 9.8 inches.
We need to determine the volume of the hemisphere.
Volume of the hemisphere:
The volume of the hemisphere can be determined using the formula,
[tex]V=\frac{2}{3} \pi r^3[/tex]
where r is the radius of the hemisphere.
Substituting r = 9.8 in the above formula, we get;
[tex]V=\frac{2}{3} (3.14)(9.8)^3[/tex]
Simplifying, we get;
[tex]V=\frac{2}{3} (3.14)(941.192)[/tex]
[tex]V=\frac{5910.69}{3}[/tex]
[tex]V=1970.23[/tex]
Rounding off to the nearest tenth, we get;
[tex]V=1970.2 \ in^3[/tex]
Thus, the volume of the hemisphere is 1970.2 cubic inches.
The volume of a hemisphere is 1971.23 cubic inches, if a radius of a hemisphere is 9.8 inches.
Step-by-step explanation:
The given is,
Radius of hemisphere is 9.8 inches.
Step:1
Formula of volume of hemisphere is,
[tex]V_{Hemisphere} = \frac{2}{3} \pi r^{3}[/tex]..................(1)
Where,
r - Radius of hemisphere
Step:2
From the given,
r = 9.8 inches
Equation (1) becomes,
[tex]V_{Hemisphere} = \frac{2}{3} \pi (9.8)^{3}[/tex]
= [tex]\frac{2}{3} \pi (942.192)[/tex]
= [tex]\frac{2}{3} (3.1415) (942.192)[/tex] [tex](\pi =3.1415)[/tex]
= (0.66666666)(3.1415)(942.192)
= 1971.23
Volume of hemisphere = 1971.23 cubic inches
Result:
The volume of a hemisphere is 1971.23 cubic inches, if a radius of a hemisphere is 9.8 inches.