Respuesta :
Answer:
Approximately [tex]\rm 31.5\; g[/tex].
Explanation:
The mass of a solution can be divided into two parts:
- the solute (the material that was dissolved,) and
- the solvent.
In this particular [tex]\rm KOH[/tex] solution in water,
- [tex]\rm KOH[/tex] is the solute, while
- water is the solvent.
The number [tex]35\%[/tex] here likely refers to the concentration of [tex]\rm KOH[/tex] in this solution. That's ratio between the mass of the solute ([tex]\rm KOH[/tex]) and the mass of the whole solution (mass of solute plus mass of solvent.) That is:
[tex]\displaystyle \frac{m(\text{KOH})}{m(\text{solution})} = 35\% = 0.35[/tex].
Hence, [tex]m(\mathrm{KOH}) = 0.35\, m(\text{solution})[/tex].
However, since the solution contains only the solute and the solvent, [tex]m(\text{solution}) = m(\text{solute}) + m(\text{solvent})[/tex].
For this solution in particular,
[tex]\begin{aligned}&m(\text{solution})\\&= m(\text{solute}) + m(\text{solvent}) \\ &= m(\text{KOH}) + m(\text{water})\end{aligned}[/tex].
As a result,
[tex]\begin{aligned}&m(\mathrm{KOH})\\ &= 0.35\, m(\text{solution}) \\&= 0.35\, (m(\mathrm{KOH}) + m(\text{water}))\\&= 0.35\, m(\mathrm{KOH}) + 0.35 \, m(\text{water})\end{aligned}[/tex].
Subtract [tex]0.35\, m(\mathrm{KOH})[/tex] from both sides of the equation:
[tex](1 - 0.35)\, m(\mathrm{KOH}) = 0.35\, m(\text{water})[/tex].
[tex]\begin{aligned} &m(\mathrm{KOH}) \\ &= \left(\frac{0.35}{1 - 0.35}\right)\cdot m(\text{water}) \\ &= \frac{0.35}{0.65} \times 58.5\; \text{g} = 31.5 \; \text{g}\end{aligned}[/tex].
Note, that for this calculation, there's nothing special about this [tex]35\%[/tex] solution of [tex]\mathrm{KOH}[/tex] in water. In general,
[tex]\displaystyle m(\text{solute}) = \left(\frac{\%\text{concentration}}{100\% - \%\text{concentration}}\right)\cdot m(\text{solvent})[/tex].