[tex]I=\displaystyle\int\frac x{(1-x^2)^3}\,\mathrm dx[/tex]
Haz la sustitución:
[tex]y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx[/tex]
[tex]\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{y^3}=\frac1{4y^2}+C=\frac1{4(1-x^2)^2}+C[/tex]
Para confirmar el resultado:
[tex]\dfrac{\mathrm dI}{\mathrm dx}=\dfrac14\left(-\dfrac{2(-2x)}{(1-x^2)^3}\right)=\dfrac x{(1-x^2)^3}[/tex]
[tex]I=\displaystyle\int\frac{x^2}{(1+x^3)^2}\,\mathrm dx[/tex]
Sustituye:
[tex]y=1+x^3\implies\mathrm dy=3x^2\,\mathrm dx[/tex]
[tex]\implies I=\displaystyle\frac13\int\frac{\mathrm dy}{y^2}=-\frac1{3y}+C=-\frac1{3(1+x^3)}+C[/tex]
(Te dejaré confirmar por ti mismo.)
[tex]I=\displaystyle\int\frac x{\sqrt{1-x^2}}\,\mathrm dx[/tex]
Sustituye:
[tex]y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx[/tex]
[tex]\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{\sqrt y}=-\frac12(2\sqrt y)+C=-\sqrt{1-x^2}+C[/tex]
[tex]I=\displaystyle\int\left(1+\frac1t\right)^3\frac{\mathrm dt}{t^2}[/tex]
Sustituye:
[tex]u=1+\dfrac1t\implies\mathrm du=-\dfrac{\mathrm dt}{t^2}[/tex]
[tex]\implies I=-\displaystyle\int u^3\,\mathrm du=-\frac{u^4}4+C=-\frac{\left(1+\frac1t\right)^4}4+C[/tex]
Podemos hacer que esto se vea un poco mejor:
[tex]\left(1+\dfrac1t\right)^4=\left(\dfrac{t+1}t\right)^4=\dfrac{(t+1)^4}{t^4}[/tex]
[tex]\implies I=-\dfrac{(t+1)^4}{4t^4}+C[/tex]