To find the distance between a point X and an inaccessible point​ Z, a line segment XY is constructed. Measurements show that XYequals946 ​m, angle XYZequals12 degrees 36 prime​, and angle YZXequals99 degrees 42 prime. Find the distance between X and Z to the nearest meter.

Respuesta :

Answer:

[tex]XZ=209\ m[/tex]

Step-by-step explanation:

step 1

Convert degrees and minutes to degrees

Remember that

[tex]1^o=60'[/tex]

so

[tex]m\angle XYZ=12^o36'=12^o+(36/60)=12.6^o[/tex]

[tex]m\angle YZX=99^o42'=99^o+(42/60)=99.7^o[/tex]

step 2

Applying the law of sines

[tex]\frac{XY}{sin(YZX)}=\frac{XZ}{sin(XYZ)}[/tex]

substitute the given values

[tex]\frac{946}{sin(99.7^o)}=\frac{XZ}{sin(12.6^o)}[/tex]

solve for XZ

[tex]XZ=\frac{946}{sin(99.7^o)}sin(12.6^o)=209\ m[/tex]

ACCESS MORE