Respuesta :
Answer:
a) 14.46%
b) 0.00%
c) 1.54%
Step-by-step explanation:
According to the survey, 10% of Americans are afraid to fly.
This means [tex]p=0.10[/tex] and [tex]q=1-0.10=0.90[/tex].
If 1100 Americans are sampled, then the sample size is [tex]n=1100[/tex] .
The mean of the distribution is [tex]\mu=np[/tex].
This means [tex]\mu=1100\times 0.10=110[/tex]
The standard deviation is [tex]\sigma=\sqrt{npq}[/tex]
We substitute the values to get:
[tex]\sigma=\sqrt{1100\times 0.1\times 0.9}=9.95[/tex]
a) We want to find the probability that 121 or more Americans in the survey are afraid to fly.
We first apply the continuity correction factor to get: [tex]P(X\ge121)=P(X\:>\:121-0.5)\\P(X\ge121)=P(X\:>\:120.5)[/tex]
We now convert to Z-scores to get:
[tex]P(X\:>\:120.5)=P(z\:>\:\frac{120.5-110}{9.95})=1.06\\[/tex]
From the standard normal distribution table P(z>1.06)=0.1446
As a percentage, the probability is 14.46%
b) We want to find the probability that 165 or more Americans in the survey are afraid to fly.
We apply the CCF to get:
[tex]P(X\ge165)=P(X\:>\:165-0.5)\\P(X\ge165)=P(X\:>\:164.5)[/tex]
We convert to z-scores:
[tex]P(X\:>\:164.5)=P(z\:>\:\frac{164.5-110}{9.95})=5.48[/tex]
From the normal distribution, P(z>164.5)=0
c) First, 8% of 1100 is 88.
We want to find the probability that 88 or less Americans in the survey are afraid to fly.
We apply the CCF to get:
[tex]P(X\le88)=P(X\:<\:88+0.5)\\P(X\le88.5)=P(X\:<\:88.5)[/tex]
We convert to z-scores:
[tex]P(X\:<\:88.5)=P(z\:<\:\frac{88.5-110}{9.95})=-2.16[/tex]
From the normal distribution, P(z>\:-2.16)=0.0154
As a percentage, we get 1.54%
The probability will be:
(a) 13.57%
(b) 0%
(c) 1.36%
Given:
- p = 10%
or,
= 0.10
- n = 110
According to the question,
- [tex]\mu \hat{p} = p = 0.10[/tex]
- [tex]\sigma _{\hat p} = \frac{p(1-p) }{n}[/tex]
[tex]= 0.00905[/tex]
- [tex]z = \frac{\hat p -p}{\sigma_{\hat p}}[/tex]
(a)
→ [tex]P(\hat p \geq \frac{121}{1100} ) = P(\frac{Z \geq \frac{121}{1100} }{0.00905} )[/tex]
[tex]= P(Z \geq 1.10)[/tex]
[tex]= 13.57[/tex] (%)
(b)
→ [tex]P(\hat p \frac{165}{1100} ) = P (\frac{Z \geq \frac{165}{1100} - 0.10}{0.00905} )[/tex]
[tex]= P(Z \geq 5.52)[/tex]
[tex]= 0[/tex] (%)
(c)
→ [tex]P(\hat p \leq 0.08)= P(Z \leq \frac{0.08-0.10}{0.00905} )[/tex]
[tex]= P(Z \leq -2.21)[/tex]
[tex]= 1.36[/tex] (%)
Thus the above answers are correct.
Learn more:
https://brainly.com/question/19261152