which is the value of this expression when m equals 3 and n equals -5


(6m with exponent of -1 x n with the exponent of 0) another exponent of -3

Respuesta :

When you have a negative exponent, you move the base with the negative exponent to the other side of the fraction to make the exponent positive.

For example:

[tex]\frac{1}{2y^{-3}} =\frac{y^3}{2}[/tex]    ("y" is the base with the negative exponent)

[tex]x^{-5}[/tex] or [tex]\frac{x^{-5}}{1} =\frac{1}{x^5}[/tex]

When you multiply an exponent directly to a base with an exponent, you multiply the exponents together.

For example:

[tex](y^3)^2=y^{(3*2)}=y^6[/tex]

[tex](x^2)^4=x^{(2*4)}=x^8[/tex]

[tex](2n)^3[/tex] or [tex](2^1n^1)^3=2^{(1*3)}n^{(1*3)}=2^3n^3=8n^3[/tex]

When you have an exponent of 0, the result will always equal 1

For example:

[tex]x^0=1[/tex]

[tex]5^0=1[/tex]

[tex]y^0=1[/tex]

[tex](6m^{-1}*n^0)^{-3}[/tex]      I think you should first make the exponents positive

[tex]\frac{1}{(\frac{6}{m^1} *n^0)^3}[/tex]    

Since you know:

m = 3

n = -5    Substitute/plug it into the equation

[tex]\frac{1}{(\frac{6}{(3)^1}*(-5)^0)^3 }[/tex]

[tex]\frac{1}{(2*1)^3}[/tex]

[tex]\frac{1}{2^3}[/tex]

[tex]\frac{1}{8}[/tex]      

ACCESS MORE