Answer:
The fraction of lidocaine is 0.999
Explanation:
The number of moles of MOPS:
[tex]n_{MOPS} =0.01*0.1=1x10^{-3} moles[/tex]
The number of moles of NaOH:
[tex]n_{NaOH} =0.01*0.074=7.4x10^{-4} moles[/tex]
In 20 mL of solution, the molarity is:
[tex]M_{NaOH}=\frac{7.4x10^{-4} }{0.02} =0.037mol/L[/tex]
The acid form is:
1x10⁻³ - 7.4x10⁻⁴ = 2.6x10⁻⁴moles
[tex]M_{MOPS}=\frac{2.6x10^{-4} }{0.02} =0.013mol/L[/tex]
[tex]pKa=-logKa=-log(3.51x10^{-5} )=4.45[/tex]
[tex]pH=pKa+log\frac{[NaOH]}{[MOPS]} =4.45+log\frac{0.037}{0.013} =4.9[/tex]
About lidocaine, the pKa is:
Ka = 1x10⁻¹⁴/8.7x10⁻⁷=1.15x10⁻⁸
[tex]pKa=-logKa=-log(1.15x10^{-8} )=7.94[/tex]
[tex]pH=pKa+log\frac{[base]}{[acid]} \\4.9=7.94+log\frac{[base]}{[acid]}\\log\frac{[base]}{[acid]}=-3.04\\base/acid=9.12x10^{-4}[/tex]
The fraction of lidocaine is:
[tex]f=\frac{1}{1.009} =0.999[/tex]