Respuesta :
Given:
The given expression is [tex]\left(\frac{3}{10}\right)^{3}[/tex]
We need to determine the value of the given expression.
Value of the expression:
Let us determine the value of the expression.
The value of the expression can be determined by simplifying the given expression.
Applying the exponent rule, [tex]\left(\frac{a}{b}\right)^{c}=\frac{a^{c}}{b^{c}}[/tex], we get;
[tex]\left(\frac{3}{10}\right)^{3}=\frac{3^{3}}{10^{3}}[/tex]
Since, the value of 3³ is 27 and the value of 10³ is 1000, substituting these values, we get;
[tex]\frac{27}{1000}[/tex]
Hence, the value of the expression is [tex]\frac{27}{1000}[/tex]
Thus, Option b is the correct answer.
Answer:
[tex]\frac{27}{1000}[/tex]
Step-by-step explanation:
I got it right on edg. 2020.