Respuesta :
Answer:
a) 2.303
b) [tex]f'(t)=\frac{432e^{-0.48t}}{(1+75e^{-0.48t})^{2}}[/tex]
c) 1.3609
e) [tex]\frac{dy}{dx}=0.04y(12-y)[/tex]
f) 4.5 thousand people(smaller)
7.5 thousand people (larger)
e) t=7.93 days (smaller)
t=10.06 days (larger)
g) 1.44
Step-by-step explanation:
The given function is [tex]y=f(t)=\frac{12}{1+75e^{-0.48t}}[/tex]
To find how many thousand people have heard the news after 6 days, we substitute to get:
[tex]f(6)=\frac{12}{1+75e^{-0.48*6}}=2.303[/tex] thousands.
b) We rewrite to get: [tex]f(t)=12(1+75e^{-0.48t})^{-1}[/tex]
We differentiate using the chain rule to obtain:
[tex]f'(t)=-12(1+75e^{-0.48t})^{-2}\cdot 75e^{-0.48t}\cdot -0.48[/tex]
This simplifies to:
[tex]f'(t)=432e^{-0.48t}(1+75e^{-0.48t})^{-2}[/tex]
We rewrite as positive index to get:
[tex]f'(t)=\frac{432e^{-0.48t}}{(1+75e^{-0.48t})^{2}}[/tex]
c) To find the rate at which the news is spreading after 8 days, we substitute t=8 into [tex]f'(t)=\frac{432e^{-0.48t}}{(1+75e^{-0.48t})^{2}}[/tex] to get:
[tex]f'(8)=\frac{432e^{-0.48\cdot 8}}{(1+75e^{-0.48\cdot 8})^{2}}=1.3609[/tex]
d) The solution to the logistic differential equation:
[tex]\frac{dy}{dt}=ky(M-y)[/tex]
is
[tex]y=\frac{M}{1+be^{-Mkt}}[/tex]
By comparison, M=12, and [tex]Mk=0.48[/tex]
[tex]12k=0.48\\k=0.04[/tex]
The differential equation is:
[tex]\frac{dy}{dx}=0.04y(12-y)[/tex]
e) To how many people have heard the news when its rate of spread is 1.35 thousand per day, we equate the differential equation to 1.35 and so for t first.
[tex]\frac{432e^{-0.48t}}{(1+75e^{-0.48t})^{2}}=1.35[/tex]
This gives us: t=10.06 ot t=7.93
We substitute the times into the function to get:
[tex]f(7.93)=\frac{12}{1+75e^{-0.48\cdot7.93}}[/tex]=4.5 thousand: smaller value
[tex]f(10.06)=\frac{12}{1+75e^{-0.48\cdot10.06}}=7.5[/tex] thousand: Larger value
f) The two times that the news is spreading at rate 1.35 thousand people per day are:
[tex]t=7.93[/tex] days: Smaller value
[tex]t=10.06[/tex]: Larger value
g) To find the fastest rate at which the news spread we take the second derivative and equate it to zero.
[tex]f''(t)=0[/tex]
This corresponds to where the horizontal line is tangent to
[tex]f'(t)=\frac{432e^{-0.48t}}{(1+75e^{-0.48t})^{2}}[/tex]
From the graph the point of tangency is:
(8.99,1.44)
Therefore the fastest rate at which the news spread is 1.44
![Ver imagen kudzordzifrancis](https://us-static.z-dn.net/files/d76/4a572d2a71dcf6b2ea7e3486e43707ab.jpg)