Answer:
The new volume of the gas is 73.31 mL at -16°C.
Explanation:
Boyle's Law:
The pressure of a given mass at a constant temperature of an ideal gas is inversely proportion to its volume.
[tex]P\propto \frac 1V[/tex]
Charles' Law:
The volume is directly proportional to the temperature of an ideal gas of a given mass at a constant pressure.
[tex]V\propto T[/tex]
Combined two gas laws
[tex]PV\propto T[/tex]
[tex]\therefore \frac{P_1V_1}{T_1}= \frac{P_2V_2}{T_2}[/tex]
Given that,
A sample of neon gas closed vessel occupied 85.0 mL at 25.0°C with constant P and n.
Here [tex]P_1=P_2[/tex], [tex]V_1=85.0[/tex] mL, [tex]T_1[/tex] =( 25+273)K=298 k
[tex]V_2=[/tex]? , [tex]T_2[/tex]=(-16+273)K=257 k
Since the pressure is constant.
So, the gas equation becomes
[tex]\therefore \frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]
Putting the value of [tex]V_1[/tex],[tex]T_1[/tex] and [tex]T_2[/tex]
[tex]\Rightarrow\frac{85.0}{298}=\frac{V_2}{257}[/tex]
[tex]\Rightarrow V_2=\frac{85.0\times 257}{298}[/tex]
[tex]\Rightarrow V_2= 73.31[/tex] mL
The new volume of the gas is 73.31 mL at -16°C.