A toy company is considering a cube or sphere-shaped container for packaging a new product. The height of the cube would equal the diameter of the sphere . Compare the volume to surface area ratios of the containers. Which packaging will be more efficient? For a sphere, SA =4πr²

Respuesta :

Answer:

Packaging with cube will be more efficient.

Step-by-step explanation:

Given:

A cube and a sphere where the diameter of the sphere is equal to the height of the cube.

Let the height of the cube "x"

Radius of the sphere =  [tex](\frac{x}{2})[/tex]

Formula to be used:

Surface area of the cube = [tex]6x^2[/tex] and Surface area of the sphere = [tex]4\pi (r)^2[/tex]

Volume of the cube = [tex]x^3[/tex] and Volume of the sphere = [tex]\frac{4\pi r^3}{3}[/tex]

We have to compare the ratio of SA and Volumes.

Ratio of SA :                                        Ratio of their volumes :

⇒ [tex]\frac{SA\ of\ cube\ (S_1)}{SA\ of\ sphere\ (S_2)}[/tex]                            ⇒ [tex]\frac{Volume \ of \ cube\ (V_1)}{Volume\ of\ sphere\ (V_2)}[/tex]

⇒ [tex]\frac{6x^2}{4\pi (\frac{x}{2})^2}[/tex]                                           ⇒ [tex]\frac{x^3}{\frac{4 \pi r^3}{3} }[/tex]

⇒ [tex]\frac{6x^2}{4\pi (\frac{x^2}{4})}[/tex]                                           ⇒ [tex]\frac{x^3}{\frac{4 \pi (\frac{x}{2})^3}{3} }[/tex]

⇒ [tex]\frac{6x^2}{\pi x^2}[/tex]                                               ⇒  [tex]\frac{x^3}{\frac{4 \pi (\frac{x^3}{8})}{3} }[/tex]

⇒ [tex]\frac{6}{\pi}[/tex]                                                  ⇒ [tex]\frac{6}{\pi}[/tex]

⇒ approx [tex]2[/tex]                                     ⇒  approx [tex]2[/tex]

⇒ [tex]S_1=2S_2[/tex]                                      ⇒ [tex]V_1=2V_2[/tex]

Packaging of the toy with the cube will be more efficient as it has more volume comparatively.

ACCESS MORE