Respuesta :
Answer:
The height of the Silo is 84 ft
∴ [tex]h_s=84ft[/tex]
Step-by-step explanation:
Given that a 6-foot tall observer casts a 3.5-foot shadow at the same time a silo casts a 49-foot shadow.
To find the height of the Silo:
We can solve this by setting up a ratio comparing the height of the Silo to the height of the observer and shadow of the Silo to the shadow of the observer.
Let [tex]h_{s}=x ft[/tex] be height of the Silo
[tex]s_s=49ft[/tex] shadow of the Silo
[tex]h_o=6ft[/tex] height of the observer
[tex]s_o=3.5ft[/tex] shadow of the observer
Now we have [tex]\frac{h_s}{s_s}=\frac{h_o}{s_o}[/tex]
Substitute the values we get
[tex]\frac{x}{49}=\frac{6}{3.5}[/tex]
[tex]x=\frac{6\times 49}{3.5}[/tex]
[tex]=\frac{294}{3.5}[/tex]
[tex]x=84[/tex]
∴ [tex]h_s=84ft[/tex]
∴ the height of the silo is 84 ft
Answer:
x = 84ft
Step-by-step explanation:
6ft/3.5ft = x/49ft
3.5x = 6 x 49
3.5x = 294
3.5x ÷ 3.5 = 294 ÷ 3.5
6ft/3.5ft = 84ft/49ft