2.

1. A 6-foot tall observer casts a 3.5-foot shadow

at the same time a silo casts a 49-foot shadow.

How tall is the silo?

Respuesta :

Answer:

The height of the Silo is 84 ft

∴ [tex]h_s=84ft[/tex]

Step-by-step explanation:

Given that a 6-foot tall observer casts a 3.5-foot shadow  at the same time a silo casts a 49-foot shadow.

To find the height of the Silo:

We can solve this by setting up a ratio comparing the height of the Silo to the height of the observer and shadow of the Silo to the shadow of the observer.

Let [tex]h_{s}=x ft[/tex]  be height of the Silo

[tex]s_s=49ft[/tex]  shadow of the Silo

[tex]h_o=6ft[/tex] height of the observer

[tex]s_o=3.5ft[/tex] shadow of the observer

Now we have [tex]\frac{h_s}{s_s}=\frac{h_o}{s_o}[/tex]

Substitute the values we get

[tex]\frac{x}{49}=\frac{6}{3.5}[/tex]

[tex]x=\frac{6\times 49}{3.5}[/tex]

[tex]=\frac{294}{3.5}[/tex]

[tex]x=84[/tex]

∴ [tex]h_s=84ft[/tex]

∴ the height of the silo is 84 ft

Answer:

x = 84ft

Step-by-step explanation:

6ft/3.5ft = x/49ft

3.5x = 6 x 49

3.5x = 294

3.5x ÷ 3.5 = 294 ÷ 3.5

6ft/3.5ft = 84ft/49ft