Respuesta :

x^(m/n)=[tex] \sqrt[n]{x^m} [/tex]
2^(5/2)=[tex] \sqrt[2]{x^5} [/tex]
2^(3/2)=[tex] \sqrt[2]{x^3} [/tex]

so
2^(5/2)-2^(3/2)=
[tex] \sqrt{2^5} - \sqrt{2^3} [/tex]=
[tex] 4\sqrt{2} - 2\sqrt{2} [/tex]=
[tex] 2\sqrt{2} [/tex]


Answer:

2^(5/2)-2^(3/2)=

\sqrt{2^5} - \sqrt{2^3} =

4\sqrt{2} - 2\sqrt{2} =

2\sqrt{2}  

Step-by-step explanation:

x^(m/n)= \sqrt[n]{x^m}  

2^(5/2)= \sqrt[2]{x^5}  

2^(3/2)= \sqrt[2]{x^3}