Respuesta :
To evaluate the equation log7 343 (with base 7) , we pattern this to its standard form log a b (with base a). this expression is equal to log b over log a. In this case, the expression given is equal to log 343 / log 7. The answer to this problem is 3. 3^7 is equal to 343.
Answer: The required value of the given expression is 3.
Step-by-step explanation: We are given to evaluate the following logarithmic expression :
[tex]E=\log_7343~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]
We will be using the following logarithmic properties :
[tex](i)~\log_ab^c=c\log_ab,\\\\(ii)~\log_aa=1.[/tex]
From (i), we get
[tex]E\\\\=\log_7343\\\\=\log_77^3\\\\=3\log_77~~~~~~~~~~~~~~~~~~~~~~~~~~~~[\textup{Using property (i)}]\\\\=3\times1~~~~~~~~~~~~~~~~~~~~~~~~~~~~[\textup{Using property (ii)}]\\\\=3.[/tex]
Thus, the required value of the given expression is 3.