If tan x°= a divided by 4 and cos x°=4 divided by b, what is the value of sin x°?

A.) sin x°= 4b
B.) sin x°=b divided by a
C.) sin x°= 4a
D.) sin x°=a divided by b

Respuesta :

We are given with the expressions above and translate them into

tan x = a / 4  and 
cos x = 4 = b

According to the trigonometric identities, tan x = sin x/ cos x, hence 

sinx  = tan x * cos x = (a/4)*4 or equal to a. The answer is C. 4a.

Answer:

(D)  sin x°=a divided by b

Step-by-step explanation:

Given: tan x°= a divided by 4 and cos x°=4 divided by b that is:

tanx°=[tex]\frac{a}{4}[/tex] and cosx°=[tex]\frac{4}{b}[/tex]

Solution: Using trigonometry, we have

tanx°=[tex]\frac{sinx^{{\circ}}}{cosx^{{\circ}}}[/tex]

⇒[tex]sinx^{{\circ}}=tanx^{{\circ}}{\times}cosx^{{\circ}}[/tex]

Substituting the given values, we get

⇒[tex]sinx^{{\circ}}=\frac{a}{4}{\times}\frac{4}{b}[/tex]

⇒[tex]sinx^{{\circ}}=\frac{a}{b}[/tex]

Therefore, the value of sinx° is a divided by b.

ACCESS MORE