Respuesta :
We are given with the expressions above and translate them into
tan x = a / 4 and
cos x = 4 = b
According to the trigonometric identities, tan x = sin x/ cos x, hence
sinx = tan x * cos x = (a/4)*4 or equal to a. The answer is C. 4a.
tan x = a / 4 and
cos x = 4 = b
According to the trigonometric identities, tan x = sin x/ cos x, hence
sinx = tan x * cos x = (a/4)*4 or equal to a. The answer is C. 4a.
Answer:
(D) sin x°=a divided by b
Step-by-step explanation:
Given: tan x°= a divided by 4 and cos x°=4 divided by b that is:
tanx°=[tex]\frac{a}{4}[/tex] and cosx°=[tex]\frac{4}{b}[/tex]
Solution: Using trigonometry, we have
tanx°=[tex]\frac{sinx^{{\circ}}}{cosx^{{\circ}}}[/tex]
⇒[tex]sinx^{{\circ}}=tanx^{{\circ}}{\times}cosx^{{\circ}}[/tex]
Substituting the given values, we get
⇒[tex]sinx^{{\circ}}=\frac{a}{4}{\times}\frac{4}{b}[/tex]
⇒[tex]sinx^{{\circ}}=\frac{a}{b}[/tex]
Therefore, the value of sinx° is a divided by b.