Respuesta :
Answer:
[tex]\displaystyle \int {e^{2x}cos(3x)} \, dx = \frac{e^{2x}}{13} \bigg[ 3sin(3x) + 2cos(3x) \bigg] + C[/tex]
General Formulas and Concepts:
Algebra I
- Terms/Coefficients
- Factoring
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Integration
- Integrals
- Indefinite Integrals
- Integration Constant C
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
U-Substitution
Integration by Parts: [tex]\displaystyle \int {u} \, dv = uv - \int {v} \, du[/tex]
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int {e^{2x}cos(3x)} \, dx[/tex]
Step 2: Integrate Pt. 1
Identify variables for integration by parts using LIPET.
- Set u: [tex]\displaystyle u = e^{2x}[/tex]
- [u] Differentiate [Exponential Differentiation, Chain Rule]: [tex]\displaystyle du = 2e^{2x} \ dx[/tex]
- Set dv: [tex]\displaystyle dv = cos(3x) \ dx[/tex]
- [dv] Trigonometric Integration [U-Substitution]: [tex]\displaystyle v = \frac{sin(3x)}{3}[/tex]
Step 3: Integrate Pt. 2
- [Integral] Integration by Parts: [tex]\displaystyle \int {e^{2x}cos(3x)} \, dx = \frac{e^{2x}sin(3x)}{3} - \int {\frac{2e^{2x}sin(3x)}{3}} \, dx[/tex]
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {e^{2x}cos(3x)} \, dx = \frac{e^{2x}sin(3x)}{3} - \frac{2}{3}\int {e^{2x}sin(3x)} \, dx[/tex]
Step 4: Integrate Pt. 3
Identify variables for integration by parts using LIPET (again).
- Set u: [tex]\displaystyle u = e^{2x}[/tex]
- [u] Differentiate [Exponential Differentiation, Chain Rule]: [tex]\displaystyle du = 2e^{2x} \ dx[/tex]
- Set dv: [tex]\displaystyle dv = sin(3x) \ dx[/tex]
- [dv] Trigonometric Integration [U-Substitution]: [tex]\displaystyle v = \frac{-cos(3x)}{3}[/tex]
Step 5: Integrate Pt. 4
- [Integral] Integration by Parts: [tex]\displaystyle \int {e^{2x}cos(3x)} \, dx = \frac{e^{2x}sin(3x)}{3} - \frac{2}{3} \bigg[ \frac{-e^{2x}cos(3x)}{3} - \int {\frac{-2e^{2x}cos(3x)}{3}} \, dx \bigg][/tex]
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {e^{2x}cos(3x)} \, dx = \frac{e^{2x}sin(3x)}{3} - \frac{2}{3} \bigg[ \frac{-e^{2x}cos(3x)}{3} + \frac{2}{3}\int {e^{2x}cos(3x)} \, dx \bigg][/tex]
- Simplify: [tex]\displaystyle \int {e^{2x}cos(3x)} \, dx = \frac{e^{2x}sin(3x)}{3} + \frac{2e^{2x}cos(3x)}{9} - \frac{4}{9}\int {e^{2x}cos(3x)} \, dx[/tex]
- Rewrite: [tex]\displaystyle \frac{13}{9}\int {e^{2x}cos(3x)} \, dx = \frac{e^{2x}sin(3x)}{3} + \frac{2e^{2x}cos(3x)}{9} + C[/tex]
- Isolate: [tex]\displaystyle \int {e^{2x}cos(3x)} \, dx = \frac{9}{13} \bigg[ \frac{e^{2x}sin(3x)}{3} + \frac{2e^{2x}cos(3x)}{9} \bigg] + C[/tex]
- Simplify: [tex]\displaystyle \int {e^{2x}cos(3x)} \, dx = \frac{3e^{2x}sin(3x)}{13} + \frac{2e^{2x}cos(3x)}{13} + C[/tex]
- Factor: [tex]\displaystyle \int {e^{2x}cos(3x)} \, dx = \frac{e^{2x}}{13} \bigg[ 3sin(3x)} + 2cos(3x) \bigg] + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e