Respuesta :
Hello,
1)
sin x=3/5==>x=126.869897...° (since in quadrant II)
2)==>cos x<0
cos x=-√(1-sin ² x)=-√(1-9/25)=-4/5
tan x=(3/5)/(-4/5)=-3/4
cotg x=-4/3 =1/tan x
sec x=1/cos x=-5/4
cosec x=1/sin x=5/3
1)
sin x=3/5==>x=126.869897...° (since in quadrant II)
2)==>cos x<0
cos x=-√(1-sin ² x)=-√(1-9/25)=-4/5
tan x=(3/5)/(-4/5)=-3/4
cotg x=-4/3 =1/tan x
sec x=1/cos x=-5/4
cosec x=1/sin x=5/3
The first step to take here is to evaluate the equation sin theta = 3/5. Theta is equal to 36.86 degrees. Since the angle lies in the second quadrant, the angle is 180-36.86 or equal to 143.13 degrees. Thus, sin theta = 3/5cos theta = -4/5tan theta = -3/4csc theta = 5/3sec theta = -5/4cot theta = -4/3