Respuesta :
assuming the 2nd one is 4a^2 - 20a +25, it is the one you're looking for. It factors to be (2a-5)^2
Answer:
[tex]4a^2 - 20a+25[/tex]
Step-by-step explanation:
Since, for a perfect square trinomial the value of discriminant = 0,
That is, if for a quadratic equation [tex]ax^2+bx+c[/tex]
[tex]D=b^2-4ac=0[/tex]
Then, [tex]ax^2+bx+c[/tex] is a perfect square trinomial,
For [tex]49x^2 - 28x+16[/tex],
[tex](-28)^2-4\times 49\times 16=-2352\neq 0[/tex]
⇒ [tex]49x^2 - 28x+16[/tex] is not a perfect square trinomial,
For [tex]4a^2 - 20a+25[/tex],
[tex](-20)^2-4\times 4\times 25=400-400=0[/tex]
⇒ [tex]4a^2 - 20a+25[/tex] is a perfect square trinomial,
For [tex]25b^2 - 20b - 16[/tex],
[tex](-20)^2-4\times 25\times -16=2000\neq 0[/tex]
⇒ [tex]25b^2 - 20b - 16[/tex] is not a perfect square trinomial,
For [tex]16x^2 - 24x - 9[/tex],
[tex](-24)^2-4\times 16\times -9=1152\neq 0[/tex]
⇒ [tex]16x^2 - 24x -9[/tex] is not a perfect square trinomial,