Respuesta :
Answer:
Question 1: [tex]{\lambda = 2.45*10^{-34}m.[/tex]
Question 2: [tex]v=8.45*10^{20}m/s[/tex].
Explanation:
The de broglie wavelength is given by
[tex]\lambda = \dfrac{h}{mv}[/tex]
where [tex]m[/tex] is the mass of the ball, [tex]v[/tex] is its velocity, and [tex]h =6.63*10^{-34}J\cdot s[/tex] is the plank's constant.
Now, in the case of the golf ball
[tex]m= 1.0*10^2*10^{-3}kg[/tex]
[tex]v =27m/s[/tex];
therefore, the de broglie wavelength is
[tex]\lambda = \dfrac{6.63*10^{-34}}{(1.0*10^{-1}kg)(27m/s)}[/tex]
[tex]\boxed{\lambda = 2.45*10^{-34}m.}[/tex]
For the second question
[tex]\lambda = 5.6*10^{-3}*10^{-9}m[/tex],
therefore the de broglie relation gives
[tex]5.6*10^{-3}*10^{-9}=\dfrac{6.63*10^{-34}}{1.0*10^{-1}v}[/tex]
solving for [tex]v[/tex] we get:
[tex]v=8.45*10^{20}m/s[/tex]
which is way larger than the speed of light, and therefore, the golf ball can never have this wavelength!
The wavelength of the golf ball moving at 27 m/s is 2.456 * 10⁻³⁷ m
De Broglie formula
De Broglie formula is given by:
Wavelength (λ) = Planks constant (h) / (mass (m) * velocity (v))
a) Given that:
v = 27 m/s, h = 6.63 * 10⁻³⁴ J.s, m = 1 * 10² kg, hence:
λ = 6.63 * 10⁻³⁴ / (27 * 1 * 10²) = 2.456 * 10⁻³⁷ m
b) Given that:
λ = 5.6 * 10⁻³ nm = 5.6 * 10⁻¹² m, h = 6.63 * 10⁻³⁴ J.s, m = 1 * 10² kg, hence:
5.6 * 10⁻¹² m = 6.63 * 10⁻³⁴ / (v * 1 * 10²)
v = 1.18 * 10⁻²⁴ m/s
The wavelength of the golf ball moving at 27 m/s is 2.456 * 10⁻³⁷ m
Find out more on de Broglie at: https://brainly.com/question/5440536