When beryllium-7 ions (m = 11.65 × 10-27 kg) pass through a mass spectrometer, a uniform magnetic field of 0.205 T curves their path directly to the center of the detector, as in the drawing. For the same accelerating potential difference, what magnetic field should be used to send beryllium-10 ions (m = 16.63 × 10-27 kg) to the same location in the detector? Both types of ions are singly ionized (q = +e).

Respuesta :

Answer:

ratio =0.3075 T

Explanation:

The magnetic field B creates a force on a moving charge such that

[tex]F = qvB[/tex]

Now this causes a centripetal acceleration

[tex]F = = mv^2/r[/tex]

 so

[tex]qvB = mv^2/r[/tex] ...........(i)

[tex]B = mv/(rq)[/tex]  ...............(ii)

If  accelerating potential V is  same and  then  kinetic energy equals the potential energy difference

[tex]\frac{1}{2} mv^2 = Vq[/tex]

[tex]v = \sqrt{(2Vq/m)}[/tex]      put these value in equation (ii)

[tex]B = m\frac{\sqrt{(2Vq/m)} }{rq}[/tex]  

simplifying we get  

[tex]B =m \frac{(\sqrt{ 2Vm/q})}{r}[/tex]

for same location r will be same in both case

[tex]B_{7} = \frac{ \sqrt{(m_{7})(2V/q) }}{r}[/tex]      ..............(iii)

[tex]B_{10} = \frac{ \sqrt{(m_{10})(2V/q) }}{r}[/tex]    ..........(iv)

 dividing (iv) and (iii) equation we get

[tex]\frac{B_{10}}{B_{7}} = \sqrt{\frac{m_{10}}{{m_7}} }[/tex]

[tex]{B_{10}} = B_{7} \sqrt{\frac{m_{10}}{{m_7}} }[/tex]

[tex]B_{10} = 0.2574T\sqrt{\frac{ (1.663x10^-26}{(1.165x10^-26)}[/tex]

so on solving we get  

             =0.3075 T

The required magnetic field should be 0.245 T.

When a particle with charge q enters a constant magnetic field, a magnetic force is generated perpendicular to both the velocity of the particle (v) and the magnetic field (B) in that region, mathematically represented as:

    F = qv × B

this forces the particle to move in a curved path which means it experiences a centripetal force:

[tex]mv^{2} /R = qvB[/tex]

R = mv/qB

According to the question, the radius r of both the ions B(7) and B(10) must be same.

Also, if a charge is a region with potential difference V, the kinetic energy of the particle is:

[tex]\frac{1}{2}mv^{2}=Vq[/tex]

Hence, velocity (v) = [tex]\sqrt[]{\frac{2Vq}{m} }[/tex]

Now, we know that:

              [tex]R_{7} =R_{10}[/tex]

⇒        [tex]\frac{m_{7}\sqrt[]{\frac{2Vq}{m_{7} } } }{qB_{7} } = \frac{m_{10}\sqrt[]{\frac{2Vq}{m_{10} } } }{qB_{10} }[/tex]

⇒         [tex]\frac{B_{7} }{B_{10} } = \sqrt {\frac{m_{7} }{m_{10} } }[/tex]

⇒           [tex]{B_{10} }={B_{7} }\sqrt {\frac{m_{10} }{m_{7} } }[/tex]

      B(10) = 0.205 [tex]\sqrt{\frac{16.63}{11.65} }[/tex] T

      B(10) = 0.245 T is the strength of magnetic field required.

Learn more about Magnetic Field:

https://brainly.com/question/23472422

 

ACCESS MORE
EDU ACCESS