Respuesta :
Composite functions are derived by combining multiple functions.
The statement is false
The functions are given as:
f(x) and g(x)
Where:
[tex]\mathbf{(f\ o\ g)(x) = f(g(x))}[/tex]
and
[tex]\mathbf{(g\ o\ f)(x) = g(f(x))}[/tex]
The true statement is that:'
[tex]\mathbf{(f\ o\ g)(x)\ and\ (g\ o\ f)(x)}[/tex] are not always equal
The proof is as follows:
Assume that:
[tex]\mathbf{f(x) = 3x + 1}[/tex]
[tex]\mathbf{g(x) = 2x - 5}[/tex]
We have:
[tex]\mathbf{(f\ o\ g)(x) = f(g(x))}[/tex]
[tex]\mathbf{(f\ o\ g)(x) = 3(2x - 5) + 1}[/tex]
[tex]\mathbf{(f\ o\ g)(x) = 6x - 15 + 1}[/tex]
[tex]\mathbf{(f\ o\ g)(x) = 6x - 14}[/tex]
Similarly:
[tex]\mathbf{(g\ o\ f)(x) = g(f(x))}[/tex]
[tex]\mathbf{(g\ o\ f)(x) = 2(3x + 1) - 5}[/tex]
[tex]\mathbf{(g\ o\ f)(x) = 6x + 2 - 5}[/tex]
[tex]\mathbf{(g\ o\ f)(x) = 6x -3}[/tex]
By comparing the results of the expressions:
[tex]\mathbf{(f\ o\ g)(x)\ \ne \ (g\ o\ f)(x)}[/tex]
Hence, both expressions are not always equal
Read more about composite functions at:
https://brainly.com/question/10465462
Otras preguntas
