Respuesta :

Answer:True

Step-by-step explanation:

Composite functions are derived by combining multiple functions.

The statement is false

The functions are given as:

f(x) and g(x)

Where:

[tex]\mathbf{(f\ o\ g)(x) = f(g(x))}[/tex]

and

[tex]\mathbf{(g\ o\ f)(x) = g(f(x))}[/tex]

The true statement is that:'

[tex]\mathbf{(f\ o\ g)(x)\ and\ (g\ o\ f)(x)}[/tex] are not always equal

The proof is as follows:

Assume that:

[tex]\mathbf{f(x) = 3x + 1}[/tex]

[tex]\mathbf{g(x) = 2x - 5}[/tex]

We have:

[tex]\mathbf{(f\ o\ g)(x) = f(g(x))}[/tex]

[tex]\mathbf{(f\ o\ g)(x) = 3(2x - 5) + 1}[/tex]

[tex]\mathbf{(f\ o\ g)(x) = 6x - 15 + 1}[/tex]

[tex]\mathbf{(f\ o\ g)(x) = 6x - 14}[/tex]

Similarly:

[tex]\mathbf{(g\ o\ f)(x) = g(f(x))}[/tex]

[tex]\mathbf{(g\ o\ f)(x) = 2(3x + 1) - 5}[/tex]

[tex]\mathbf{(g\ o\ f)(x) = 6x + 2 - 5}[/tex]

[tex]\mathbf{(g\ o\ f)(x) = 6x -3}[/tex]

By comparing the results of the expressions:

[tex]\mathbf{(f\ o\ g)(x)\ \ne \ (g\ o\ f)(x)}[/tex]

Hence, both expressions are not always equal

Read more about composite functions at:

https://brainly.com/question/10465462

RELAXING NOICE
Relax