Answer:
a) dE={KdQdX}{r^{2} } *cosT
b) E = (2Q)/4eL^2)
Explanation:
a) The charge of element is:
dQ = Q/L
Where the y-axis elements will cancel, thus:
[tex]dE=\frac{KdQdX}{r^{2} } *cosT[/tex]
where dX is the length element = RdT and dT is the angle element, K = 1/(4pe)
b) The angle from x-axis is:
[tex]dE=\frac{KdQ*RdX}{r^{2} } *cosT[/tex]
We integrate the expression from T to p/2 and multiply by 2:
[tex]E=\frac{2KdQ}{R} =\frac{2KQ}{LR} \frac{2KQ_{p} }{L^{2} }[/tex]
Replacing the k value:
[tex]E=\frac{2Q}{4eL^{2} }[/tex]