Answer:
Part 1) [tex]C=67^o[/tex]
Part 2) [tex]a=8.90\ units[/tex]
Part 3) [tex]c=9.88\ units[/tex]
Step-by-step explanation:
step 1
Find the measure of angle C
Remember that the sum of the interior angles of any triangle must be equal to 180 degrees
so
[tex]A+B+C=180^o[/tex]
substitute the given values
[tex]56^o+57^o+C=180^o[/tex]
[tex]C=180^o-113^o=67^o[/tex]
step 2
Find the length side a
Applying the law of sines
[tex]\frac{a}{sin(A)}=\frac{b}{sin(B)}[/tex]
substitute the given values
[tex]\frac{a}{sin(56^o)}=\frac{9.00}{sin(57^o)}[/tex]
solve for a
[tex]a=\frac{9.00}{sin(57^o)}sin(56^o)[/tex]
[tex]a=8.90\ units[/tex]
step 3
Find the length side c
Applying the law of sines
[tex]\frac{c}{sin(C)}=\frac{b}{sin(B)}[/tex]
substitute the given values
[tex]\frac{c}{sin(67^o)}=\frac{9.00}{sin(57^o)}[/tex]
solve for c
[tex]c=\frac{9.00}{sin(57^o)}sin(67^o)[/tex]
[tex]c=9.88\ units[/tex]