A balloon is 200 ft. off the ground and rising vertically at the constant rate of 15 ft/sec. An automobile passes beneath it traveling along a straight road at the constant rate of 45 mph or 66 ft/sec. How fast is the distance between them changing 1 sec. later?

Respuesta :

After 1 second has passed, the balloon will be 215 ft above the ground, and the automobile will be 66 ft away from its initial position directly below the balloon, forming a right triangle whose hypotenuse has length [tex]\sqrt{215^2+66^2}=\sqrt{50,581}[/tex] ft.

The distance between the balloon and automobile [tex]d[/tex] is related to the height of the balloon [tex]b[/tex] and the distance [tex]a[/tex] the automobile has moved away from its starting position by the Pythagorean formula,

[tex]d^2=a^2+b^2[/tex]

Differentiate both sides with respect to time [tex]t[/tex]:

[tex]2d\dfrac{\mathrm dd}{\mathrm dt}=2a\dfrac{\mathrm da}{\mathrm dt}+2b\dfrac{\mathrm db}{\mathrm dt}[/tex]

Plug in everything you know and solve for the rate you want:

[tex]2(\sqrt{50,581}\,\mathrm{ft})\dfrac{\mathrm dd}{\mathrm dt}=2(66\,\mathrm{ft})\left(66\dfrac{\rm ft}{\rm s}\right)+2(215\,\mathrm{ft})\left(15\dfrac{\rm ft}{\rm s}\right)[/tex]

[tex]\implies\dfrac{\mathrm dd}{\mathrm dt}\approx33.71\dfrac{\rm ft}{\rm s}[/tex]

RELAXING NOICE
Relax