Answer:7.93 m/s
Explanation:
Given
mass of ball [tex]m_1=20\ gm[/tex]
Mass of hanging ball [tex]m_2=100\ gm[/tex]
Length of string [tex]L=1\ m[/tex]
Maximum angle turned [tex]\theta _{max}=50^{\circ}[/tex]
[tex]v_o[/tex] is the initial velocity of ball 1 and 0 is the initial velocity of ball 2
For Perfectly elastic final velocity of ball 1 and 2 is given by
[tex]v_2'=\frac{2m_1}{m_1+m_2}\cdot v_1-\frac{m_1-m_2}{m_1+m_2}\cdot v_2[/tex]
[tex]v_1'=\frac{m_1-m_2}{m_1+m_2}\cdot v_1+\frac{2m_2}{m_1+m_2}\cdot v_2[/tex]
where [tex]v_1[/tex]and [tex]v_2[/tex] are the velocity of 1 and 2 before collision
thus [tex]v_2'=\frac{2\times 20}{120}v_0-0[/tex]
[tex]v_2'=\frac{v_o}{3}[/tex]
[tex]v_1'=\frac{20-100}{120}\times v_o+0[/tex]
[tex]v_1'=-\frac{2}{3}v_o[/tex]
By energy conservation on second ball we get
Kinetic energy=Potential Energy
[tex]\frac{1}{2}m_2(v_2')^2=m_2gL(1-\cos \theta )[/tex]
[tex]v_2'=\sqrt{2gl(1-\cos \theta )}[/tex]
[tex]v_2'=\sqrt{2\times 9.8\times 1(1-0.642)}[/tex]
[tex]v_2'=2.64\ m/s[/tex]
thus [tex]v_o=3\times v_2'=7.93\ m/s[/tex]