The Lagrangian is
[tex]L(x,y,z,\lambda,\mu)=x+2y+\lambda(x+y+z-8)+\mu(y^2+z^2-4)[/tex]
with critical points where the partial derivatives vanish:
[tex]L_x=1+\lambda=0\implies\lambda=-1[/tex]
[tex]L_y=2+\lambda+2\mu y=0\implies\mu=-\dfrac1{2y}[/tex]
[tex]L_z=\lambda+2\mu z=0\implies\mu=\dfrac1{2z}[/tex]
[tex]L_\lambda=x+y+z-8=0[/tex]
[tex]L_\mu=y^2+z^2-4=0[/tex]
The second and third equations tell us [tex]z=-y[/tex], so that in the last equation we find
[tex]y^2+(-y)^2=2y^2=4\implies y=\pm\sqrt2\implies z=\mp\sqrt2[/tex]
and from the fourth equation we get
[tex]x+y+z=x=8[/tex]
So we have two critical points, [tex](8,\sqrt2,-\sqrt2)[/tex] and [tex](8,-\sqrt2,\sqrt2)[/tex], which give respective extreme values of [tex]f(8,\sqrt2,-\sqrt2)=8+2\sqrt2[/tex] (maximum) and [tex]f(8,-\sqrt2,\sqrt2)=8-2\sqrt2[/tex] (minimum).