Respuesta :
Answer:
For [1 1 0] and [1 0 1] plane, σₓ = 6.05 MPa
For [0 1 1] plane, σ = 0; slip will not occur
Explanation:
compute the resolved shear stress in [111] direction on each of the [110], [011] and on the [101] plane.
Given;
Stress direction: [1 0 0] ⇒ A
Slip direction: [1 1 1]
Normal to slip direction: [1 1 1] ⇒ B
∅ is the angle between A & B
Step 1: cos∅ = A·B/|A| |B| = [tex]\frac{[100][111]}{\sqrt{1}.\sqrt{3} }[/tex] ⇒ cos∅ = 1/[tex]\sqrt{3}[/tex]
σₓ = τ/cos ∅·cosλ
where τ is the critical resolved shear stress given as 2.47MPa
Step 2: Solve for the slip along each plane
(a) [1 1 0]
cosλ = [1 1 0]·[1 0 0]/([tex]\sqrt{2}[/tex]·[tex]\sqrt{1}[/tex])
note: cosλ = slip D·stress D/|slip D||stress D|
cosλ = 1/[tex]\sqrt{2}[/tex]
∵ σₓ = τ/[tex]\frac{1}{\sqrt{2} }[/tex] ·[tex]\frac{1}{\sqrt{3} }[/tex] = [tex]\sqrt{6}[/tex] * 2.47MPa = 6.05MPa
Hence, stress necessary to cause slip on [1 1 0] is 6.05MPa
(b) [0 1 1]
cosλ = [0 1 1]·[1 0 0]/([tex]\sqrt{2}[/tex]·[tex]\sqrt{1}[/tex]) = 0
∵ σₓ = 2.47MPa/0, which is not defined
Hence, for stress along [1 0 0], slip will not occur along [0 1 1]
(c) [1 0 1]
cosλ = [0 1 1]·[1 0 0]/([tex]\sqrt{2}[/tex]·[tex]\sqrt{1}[/tex])
cosλ = 1/[tex]\sqrt{2}[/tex]
∵ σₓ = τ/[tex]\frac{1}{\sqrt{2} }[/tex] ·[tex]\frac{1}{\sqrt{3} }[/tex] = [tex]\sqrt{6}[/tex] * 2.47MPa = 6.05MPa
See attachment for the space diagram


Otras preguntas
