Answer:
a) P=0.353
b) P=0.950
Step-by-step explanation:
If the time between calls is exponentially distributed with a mean rate of t minutes, we can say that the expected number of calls per unit of time follows a Poisson distribution with parameter 1/t.
In this case, the parameter for the Poisson distribution is:
[tex]r=\frac{1}{10}=0.1\, min^{-1}[/tex]
The Poisson distribution for k amount of calls in a period ot t minutes is described as:
[tex]P(k,t)=\frac{(rt)^ke^{-rt}}{k!}[/tex]
The probability of having more than 3 calls in on-half hour (30 min) is:
[tex]P(k>3;t=30)=1-(P(0)+P(1)+P(2)+P(3))\\\\\\ \lambda=rt=0.1*30=3\\\\P(0)=\frac{(3)^0e^{-3}}{0!} =\frac{1*0.0498}{1}=0.050\\\\P(1)=\frac{(3)^1e^{-3}}{1!}=\frac{3*0.0498}{1} = 0.149\\\\ P(2)=\frac{(3)^2e^{-3}}{2!}=\frac{9*0.0498}{2} = 0.224\\\\P(3)=\frac{(3)^3e^{-3}}{3!}=\frac{27*0.0498}{6} =0.224\\\\\\ P(k>3)=1-(0.050+0.149+0.224+0.224)\\\\P(k>3)=1-0.647=0.353[/tex]
b) These distribution are memory-less, so they are independent of the past results.
We can calculate then the probability of having at least on call in the next half hour as:
[tex]P(k>1;t=30)=1-P(0)\\\\\\ \lambda=rt=0.1*30=3\\\\P(0)=\frac{(3)^0e^{-3}}{0!} =\frac{1*0.0498}{1}=0.050\\\\\\ P(k>1)=1-0.050=0.950[/tex]