Respuesta :
Answer:
a) [tex]\Delta S = 0.386 \ \frac{kJ}{K}[/tex]
b) [tex]\Delta S =0.395 \ \frac{kJ}{K}[/tex]
Explanation:
a)
Specific heat formula, we have:
[tex]mc(\theta_1-\theta_2)=Wt[/tex]
Where
m is mass
c is specific heat capacity of air at specific temp
[tex]\theta[/tex] is the temperature change
W is the power
t is the time
The ideal gas law is:
[tex]PV=nRT[/tex]
Where
P is the pressure
V is the volume
n is number of moles
T is temperature
R is the ideal gas constant
First, lets solve for [tex]\theta_2[/tex] in the 1st equation, remembering to use ideal gas law in it to have the variables that are given in the problem. Shown below:
[tex]mc(\theta_2-\theta_1)=Wt\\mc\theta_2-mc\theta_1=Wt\\mc\theta_2=mc\theta_1 + Wt\\\theta_2=\frac{mc\theta_1 + Wt}{mc}\\\theta_2=\theta_1+\frac{Wt}{mc}\\\theta_2=\theta_1+\frac{WtR\theta_1}{PVc}\\\theta_2=\theta_1(1+\frac{WtR}{PVc})[/tex]
Now, we know
Theta_1 is 17 celsius, which in Kelvin is 17 + 270 = 290K
Power is 200
Time is 15 mins = 15 * 60 = 900 seconds
R is 287 J/kg K
P is 120
V is 300 L
Specific heat of air at 290K is about 1005
Substituting we get:
[tex]\theta_2=\theta_1(1+\frac{WtR}{PVc})\\\theta_2=290(1+\frac{200*900*287}{120*300*1005})\\\theta_2=704 \ K[/tex]
Now, Entropy Change is:
[tex]\Delta S =mc Ln(\frac{\theta_2}{\theta_1})[/tex]
Again using the substitution equations, we have:
[tex]\Delta S = \frac{PV}{R\theta_1}cLn(1+\frac{WRt}{PVc})[/tex]
We know what the variables mean, we substitute the respective values, to get:
[tex]\Delta S = 0.386 \ \frac{kJ}{K}[/tex]
b)
For variable specific heats, we need entropy value from entropy table:
s_2 = 2.58044
s_1 = 1.66802 [1.05 * 290 K]
The formula is:
[tex]\Delta S = m(s_2-s_1)\\\Delta S = \frac{PV}{R\theta_1}(s_2-s_1)[/tex]
Substituting the values, we find the answer:
[tex]\Delta S = \frac{PV}{R\theta_1}(s_2-s_1)\\\Delta S = \frac{120*300}{287*290}(2.58044-1.66802)\\\Delta S =0.395 \ \frac{kJ}{K}[/tex]
