Answer:
a) v₂ = 26.6 ft/s
b) v₂ = 31.9 ft/s
Explanation:
a) If we use the conservation of energy for the soccer arm between tap and lowest position:
[tex]mgh=\frac{1}{2} mv^{2} \\v=\sqrt{2gh} =\sqrt{2*32.2*6} =19.66ft/s[/tex]
The velocity of the ball in the tangencial direction is:
v₂*sinθ = v₁*sin30
If v₁ = 0
θ = 0º
The coefficient of restitution is:
[tex]e=\frac{v_{2}*cosO-v_{2}cos30 }{v*cos30-(-v_{1}*cos30 )} \\0.8=\frac{v_{2}cos0-v_{2}*cos30 }{19.66*cos30-(0*cos30)} \\v_{2} =\frac{v_{2}-13.6 }{cos30}[/tex]
where O=θ
The total momentum is:
[tex]mv-mv_{1} =mv_{2} +mv_{2} cos(O+30)\\[/tex], where O = θ
[tex]mv-mv_{1} =m(\frac{v_{2}-13.6 }{cos30} )+mv_{2} cos(O+30)[/tex]
If we multiply by g:
[tex]mgv-mgv_{1} =mg(\frac{v_{2}-13.6 }{cos30} )+mgv_{2} cos(O+30)\\5*19.66-1*0=5*(\frac{v_{2}-13.6 }{cos30} )+1*v_{2} cos(O+30)[/tex]
Clearing v₂:
v₂ = 26.6 ft/s
b) The velocity of the ball is:
v₂ * sinθ = v₁ * sin30
if v₁ = 10 ft/s
v₂ * sinθ = 10 * sin30
sinθ = 5/v₂
The coefficient is:
[tex]e=\frac{v_{2}*cosO-v_{2}cos30 }{v*cos30-(-v_{2}*cos30) } \\0.8=\frac{v_{2}cosO-v_{2}cos30 }{19.66*cos30-(-10*cos30)} \\v_{2} =\frac{v_{2}cos30-20.55}{cos30}[/tex]
where O = θ
[tex]mgv-mgv_{1} =mgv_{2} +mgv_{2} cos(O+30)\\5*19.66-1*0=5v_{2} +v_{2} cos(O+30)\\98.3=5v_{2}+v_{2} cosOcos30-v_{2} sinOsin30[/tex]
solving for v₂:
v₂ = 31.9 ft/s