Respuesta :
Answer:
95% Confidence interval: (14.4537 ,15.1463)
Step-by-step explanation:
We are given the following in the question:
Population mean, μ = 15 feet
Sample mean, [tex]\bar{x}[/tex] = 14.8 feet
Sample size, n = 16
Alpha, α = 0.05
Sample standard deviation, σ = 0.65 feet
Degree of freedom = n - 1 = 15
95% Confidence interval:
[tex]\bar{x} \pm t_{critical}\displaystyle\frac{s}{\sqrt{n}}[/tex]
Putting the values, we get,
[tex]t_{critical}\text{ at degree of freedom 15 and}~\alpha_{0.05} = \pm 2.1314[/tex]
[tex]14.8 \pm 2.1314(\dfrac{0.65}{\sqrt{16}} ) \\\\= 14.8 \pm 0.3463 = (14.4537 ,15.1463)[/tex]
is the required confidence interval for the true mean length of rods.
Answer:
95% confidence interval for the true mean length of rods produced by this process is [14.45 , 15.15].
Step-by-step explanation:
We are given that a metal fabrication process, metal rods are produced to a specified target length of 15 feet. Suppose that the lengths are normally distributed.
A quality control specialist collects a random sample of 16 rods and finds the sample mean length to be 14.8 feet and a standard deviation of 0.65 feet.
Firstly, the pivotal quantity for 95% confidence interval for the true mean length of rods is given by;
P.Q. = [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]
where, [tex]\bar X[/tex] = sample mean length = 14.8 feet
s = sample standard deviation = 0.65 feet
n = sample of rods = 16
[tex]\mu[/tex] = true mean
Here for constructing 95% confidence interval we have used t statistics because we don't know about population standard deviation.
So, 95% confidence interval for the population mean, [tex]\mu[/tex] is ;
P(-2.131 < [tex]t_1_5[/tex] < 2.131) = 0.95 {As the critical value of t at 15 degree of
freedom are -2.131 & 2.131 with P = 2.5%}
P(-2.131 < [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.131) = 0.95
P( [tex]-2.131 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X - \mu}[/tex] < [tex]2.131 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95
P( [tex]\bar X-2.131 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+2.131 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95
95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-2.131 \times {\frac{s}{\sqrt{n} } }[/tex] , [tex]\bar X+2.131 \times {\frac{s}{\sqrt{n} } }[/tex] ]
= [ [tex]14.8-2.131 \times {\frac{0.65}{\sqrt{16} } }[/tex] , [tex]14.8+2.131 \times {\frac{0.65}{\sqrt{16} } }[/tex] ]
= [14.45 , 15.15]
Hence, 95% confidence interval for the true mean length of rods produced by this process is [14.45 , 15.15].