Answer:
[tex](f^{-1})'(x)[/tex] = 1/3
Step-by-step explanation:
[tex](f^{-1})'(x)[/tex] = [tex]\frac{1}{f'(f^{-1}(x))}[/tex]
if f(x) = y, [tex]f^{-1}(y)[/tex] = x, so
[tex]f^{-1}(52)[/tex] = 3 since f(3) = 52
finding f'(3)
f'(x) = 3
f'(3) = 3
[tex](f^{-1})'(x)[/tex] = 1/f'(x) = 1/3