Answer:
Center of mass=[tex](\bar{x},\bar{y})=(0,\frac{M_x}{m})=(0,\frac{3\sqrt{3}k}{2\sqrt{3}-\pi})[/tex]
Step-by-step explanation:
Given equation of circles are,
[tex]x^2+y^2=6y[/tex]
[tex]x^2+y^2=9[/tex]
To convert into parametric equation let [tex]x=r\cos\theta,y=r\sin\theta[/tex]
we get,
[tex] r=6\sin\theta[/tex] and [tex]r=\pm 3[/tex]
when,
[tex]r=3, \theta=\frac{\pi}{6}[/tex]
[tex]r=-3,\theta=\frac{7\pi}{6}[/tex]
Therefore density function is,
[tex]\roh (x,y)=\frac{k}{\sqrt{x^2+y^2}}=\frac{k}{r}[/tex]
where k is constant of proportionality.
Then,
mass=m=[tex]\int_{\frac{\pi}{6}}^{\frac{7\pi}{6}}\int_{3}^{6\sin\theta}\frac{k}{r}rdrd\theta[/tex]
[tex]=k\int_{\frac{\pi}{6}}^{\frac{7\pi}{6}}(6\sin\theta-3)d\theta[/tex]
[tex]=3k(2\sqrt{3}-\pi)[/tex]
By the symmetry of the domain and the function f(x)=x, [tex]M_y=0[/tex] and,
[tex]M_x=\int_{\frac{\pi}{6}}^{\frac{7\pi}{6}}\int_{3}^{6\sin\theta}krdrd\theta[/tex]
[tex]=\frac{9k}{2}\int_{\frac{\pi}{6}}^{\frac{7\pi}{6}}(4\sin^3\theta-\sin\theta)d\theta[/tex]
[tex]=18k\int_{\frac{\pi}{6}}^{\frac{7\pi}{6}}36\sin^2\theta\sin\theta d\theta-\frac{9k}{2}\int_{\frac{\pi}{6}}^{\frac{7\pi}{6}}\sin\theta d\theta[/tex]
[tex]=-18k\int_{\frac{\pi}{6}}^{\frac{7\pi}{6}}36(1-\cos^2\theta) d\cos\theta-\frac{9k}{2}\int_{\frac{\pi}{6}}^{\frac{7\pi}{6}}\sin\theta d\theta[/tex]
[tex]=\frac{18\sqrt{3}k}{2}[/tex]
Hence,
Center of mass=[tex](\bar{x},\bar{y})=(0,\frac{M_x}{m})=(0,\frac{3\sqrt{3}k}{2\sqrt{3}-\pi})[/tex]