Answer:
The magnetic field in the region a < r < b is [tex]B=\frac{u_{0}I(r^{2}-a^{2}) }{2\pi r(b^{2}-a^{2}) }[/tex]
Explanation:
If we have the a < r < b. The formula of current is:
[tex]J=\frac{I_{total} }{A}[/tex]
Where:
A = area enclosed by the loop.
Itotal = total current in loop.
[tex]J=\frac{I}{\pi b^{2}-\pi a^{2} }[/tex]
[tex]I_{enclosed} =JA_{enclosed}[/tex]
[tex]I_{enclosed} =\frac{I(\pi r^{2}- \pi a^{2})}{\pi b^{2}-\pi a^{2} }[/tex]
If we have the Ampere`s law:
[tex]\int\limits^a_b {B} \, ds =u_{0} I_{enclosed} \\2B\pi r=u_{0} (\frac{I(\pi r^{2}-\pi ^{2} }{\pi ^{2}-\pi a^{2} } )\\B=\frac{u_{0}I(r^{2}-a^{2}) }{2\pi r(b^{2}-a^{2}) }[/tex]