Answer:
[tex]\frac{dA}{dt}=1840.97 in^{2}/min[/tex]
Step-by-step explanation:
The equation of the surface of the right circular cylinder is:
[tex]A=2\pi rh+2\pi r^{2}=2\pi(rh+r^{2})[/tex]
Now, the rate change of this area will be:
Using the change rule
[tex]\frac{dA}{dt}=\frac{\partial A}{\partial r}\frac{\partial r}{\partial t}+\frac{\partial A}{\partial h}\frac{\partial h}{\partial t}[/tex]
Where:
[tex]\frac{dA}{dt}=\frac{\partial A}{\partial r}9+\frac{\partial A}{\partial h}(-16)[/tex]
[tex]\frac{dA}{dt}=2\pi(h+2r)9-2\pi r16=2\pi((h+2r)9-16r)[/tex]
Now, r = 16 and h = 29
[tex]\frac{dA}{dt}=2\pi((29+2*16)9-16*16)[/tex]
[tex]\frac{dA}{dt}=1840.97 in^{2}/min[/tex]
I hope it helps you!